Synthesis and structural characterisation of tetraruthenium μ_{4}-nitrene clusters containing tolylacetylene $\left(\mathrm{HC}_{2} \mathbf{T o l}\right)$. Molecular structures of $\left[\mathrm{Ru}_{4}(\mathrm{CO})_{9}(\mu-\mathrm{CO})_{2}\left(\mu_{4}-\mathrm{NH}\right)\left(\mu_{4}-\eta^{2}-\mathrm{HC}_{2} \mathrm{Tol}\right)\right]$ and $\left[\mathrm{Ru}_{4}(\mathrm{CO})_{9}-\right.$ $\left.(\mu-\mathrm{CO})_{2}\left\{\mu_{4}-\mathrm{NC}(\mathrm{O}) \mathrm{OMe}\right\}\left(\mu_{4}-\eta^{2}-\mathrm{HC}_{2} \mathrm{Tol}\right)\right]$

Emmie Ngai-Man Ho and Wing-Tak Wong * \dagger
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China

Two structurally characterized tetraruthenium carbonyl clusters, $\left[\mathrm{Ru}_{4}(\mathrm{CO})_{9}(\mu-\mathrm{CO})_{2}\left(\mu_{4}-\mathrm{NH}\right)\left(\mu_{4}-\eta^{2}-\mathrm{HC}_{2} \mathrm{Tol}\right)\right] \mathbf{1}$ and $\left[\mathrm{Ru}_{4}(\mathrm{CO})_{9}(\mu-\mathrm{CO})_{2}\left\{\mu_{4}-\mathrm{NC}(\mathrm{O}) \mathrm{OMe}\right\}\left(\mu_{4}-\eta^{2}-\mathrm{HC}_{2} \mathrm{Tol}\right)\right]$, have been isolated from the reaction between $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CO}\right)\right.$ (μ_{3} - NOMe)] and tolylacetylene $\left(\mathrm{HC}_{2} \mathrm{Tol}\right)$ in refluxing n-octane.

The chemistry of transition-metal clusters containing a μ_{4} nitrene ligand, in particular $\mu_{4}-\mathrm{NH}$, has not been well developed. In contrast, a large number of μ_{3}-nitrene clusters are known and they are found to be a key intermediate for the catalytic nitroarene carbonylation reactions. ${ }^{1,2}$ Blohm and Gladfelter ${ }^{3}$ have shown that protonation of the tetraruthenium nitrido cluster anion $\left[\mathrm{Ru}_{4}(\mathrm{CO})_{12}\left(\mu_{4}-\mathrm{N}\right)\right]^{-}$in the presence of diphenylacetylene produced the $\mu_{4}-\mathrm{NH}$ containing species $\left[\mathrm{Ru}_{4}(\mathrm{CO})_{9}-\right.$ $\left.(\mu-\mathrm{CO})_{2}\left(\mu_{4}-\mathrm{NH}\right)\left(\mu_{4}-\eta^{2}-\mathrm{PhC}_{2} \mathrm{Ph}\right)\right]^{3}$ Reactions of triruthenium nitrene clusters $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{H})_{2}\left(\mu_{3}-\mathrm{NPh}\right)\right]$ with diphenylacetylene were found to produce the μ_{4}-nitrene cluster $\left[\mathrm{Ru}_{4}(\mathrm{CO})_{9}-\right.$ $\left.(\mu-\mathrm{CO})_{2}\left(\mu_{4}-\mathrm{NPh}\right)\left(\mu_{4}-\eta^{2}-\mathrm{PhC}_{2} \mathrm{Ph}\right)\right] .{ }^{4}$ It appears that the alkynes are important auxiliary ligands that favour the formation and isolation of μ_{4}-nitrene species. Recently we reported a series of penta- and hexa-nuclear ruthenium μ_{4}-nitrene carbonyl clusters prepared from the thermolysis or pyrolysis of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{9}-\right.$ $\left.\left(\mu_{3}-\mathrm{CO}\right)\left(\mu_{3}-\mathrm{NOMe}\right)\right] .{ }^{5}$ However, preparative methods for $\mu_{4}-$ nitrene species reported so far are not very specific and lead to low yields of the products, hence their reactivity studies are hindered. Herein, we report the reactivity of tolylacetylene ($\mathrm{HC}_{2} \mathrm{Tol}$) towards the triruthenium carbonyl cluster $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{9}\right.$ $\left.\left(\mu_{3}-\mathrm{CO}\right)\left(\mu_{3}-\mathrm{NOMe}\right)\right]$, which resulted in the isolation of two tetraruthenium clusters containing μ_{4}-nitrene ligands in more accessible yields.

Heating of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CO}\right)\left(\mu_{3}-\mathrm{NOMe}\right)\right]$ with excess tolylacetylene in refluxing n-octane for 5 h afforded a brown reaction mixture. Two new yellow clusters $\left[\mathrm{Ru}_{4}(\mathrm{CO})_{9}(\mu-\mathrm{CO})_{2}\left(\mu_{4}-\right.\right.$ $\left.\mathrm{NH})\left(\mu_{4}-\eta^{2}-\mathrm{HC}_{2} \mathrm{Tol}\right)\right] 1$ and $\left[\mathrm{Ru}_{4}(\mathrm{CO})_{9}(\mu-\mathrm{CO})_{2}\left\{\mu_{4}-\mathrm{NC}(\mathrm{O}) \mathrm{OMe}\right\}-\right.$ $\left.\left(\mu_{4}-\eta^{2}-\mathrm{HC}_{2} \mathrm{Tol}\right)\right] 2$ were isolated in 35% yield each by preparative TLC on silica, see Scheme 1. Owing to the similarity in the chromatographic behaviour of clusters $\mathbf{1}$ and 2, they could not be separated. Indeed the compounds could only be obtained in the form of solvated co-crystals containing equimolar amounts of $\mathbf{1}$ and $\mathbf{2}$ which were then characterized by spectroscopy \ddagger and chemical and structural analysis.§

[^0]X-Ray analysis showed that the asymmetric unit contains two identical molecules of cluster $\mathbf{1}$, two isomeric molecules of cluster 2 and a n-hexane solvate molecule. Intermolecular hydrogen bonds are found between the $\mu_{4}-\mathrm{NH}$ of $\mathbf{1}$ and the carbonyl oxygen atom in the $\mu_{4}-\mathrm{NC}(\mathrm{O}) \mathrm{OMe}$ group of 2, see Fig. 1 . The molecular geometries of clusters $\mathbf{1}$ and $\mathbf{2}$ are similar in that, the four ruthenium atoms form a slightly twisted square-base arrangement with a quadruply bridging $\mathrm{TolC}_{2} \mathrm{H}$ ligand. Both 1 and 2 have two CO-bridged $\mathrm{Ru}-\mathrm{Ru}$ bonds [ave 2.691(1) \AA] and two unbridged $\mathrm{Ru}-\mathrm{Ru}$ bonds [ave 2.747(1) Å]. The square tetraruthenium planes $R u(1)-R u(2)-R u(3)-R u(4)$ and $R u(9)-R u(10)-R u(11)-R u(12)$ are coplanar with a mean deviation from the least squares planes of less than 0.19 and $0.20 \AA$ respectively. The nitrene N atom symmetrically caps the square base with average $\mathrm{Ru}-\mathrm{N}$ distances of $2.150(9) \AA$ for 1 and 2.183(8) Å for $\mathbf{2}$ and it lies 0.99 and $1.05 \AA$ above the basal plane for $\mathbf{1}$ and $\mathbf{2}$ respectively. In cluster 1, the hydrogen atom was located by Fourier-difference synthesis using low angle data at $0.84 \AA$ from the μ_{4}-nitrene nitrogen atom. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ showed a triplet, at $\delta 1.96\left(J_{\mathrm{NH}}=49.3 \mathrm{~Hz}\right)$, which is similar to that of $\left[\mathrm{Ru}_{4}(\mathrm{CO})_{11}\left(\mu_{4}-\mathrm{NH}\right)\left(\mu_{4}-\eta^{2}-\mathrm{PhC}_{2} \mathrm{Ph}\right)\right]^{.}$The two molecules of cluster 2 in the asymmetric unit differ in the alkyne orientation and are presented as $\mathbf{2 a}$ and $\mathbf{2 b}$ in Scheme 1.

Scheme 1 (i) Tolylacetylene, n-octane, $120^{\circ} \mathrm{C}$

[^1]

Fig. 1 Molecular structure of clusters 1 and 2 in the asymmetric unit with selected bond distances (\AA) and angles $\left({ }^{\circ}\right): \operatorname{Ru}(1)-\mathrm{Ru}(2) 2.670(1)$, $\mathrm{Ru}(1)-\mathrm{Ru}(4) 2.692(1), \mathrm{Ru}(2)-\mathrm{Ru}(3) 2.717(1), \mathrm{Ru}(3)-\mathrm{Ru}(4) 2.783(1), \mathrm{Ru}(1)-\mathrm{N}(1) 2.157(9), \mathrm{Ru}(2)-\mathrm{N}(1) 2.136(9), \mathrm{Ru}(3)-\mathrm{N}(1) 2.146(9), \mathrm{Ru}(4)-\mathrm{N}(1)$ $2.172(8), \mathrm{N}(1)-\mathrm{H} 0.82, \mathrm{Ru}(9)-\mathrm{Ru}(10) 2.684(1), \mathrm{Ru}(9)-\mathrm{Ru}(12) 2.706(1), \mathrm{Ru}(10)-\mathrm{Ru}(11) 2.727(1), \mathrm{Ru}(11)-\mathrm{Ru}(12) 2.778(1), \mathrm{Ru}(9)-\mathrm{N}(3) 2.192(8)$, $\mathrm{Ru}(10)-\mathrm{N}(3) 2.162(7), \mathrm{Ru}(11)-\mathrm{N}(3) 2.174(8), \mathrm{Ru}(12)-\mathrm{N}(3) 2.217(8), \mathrm{C}(72)-\mathrm{O}(45) 1.21(1) ; \mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(4) 84.23(4), \mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$ $95.74(4), \quad \operatorname{Ru}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(4) \quad 81.64(4), \quad \mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(3) \quad 93.74(4), \quad \mathrm{Ru}(10)-\mathrm{Ru}(9)-\mathrm{Ru}(12) \quad 83.64(4), \quad \mathrm{Ru}(9)-\mathrm{Ru}(10)-\mathrm{Ru}(11) \quad 95.84(4)$, $\mathrm{Ru}(10)-\mathrm{Ru}(11)-\mathrm{Ru}(12)$ 81.50(4), $\mathrm{Ru}(9)-\mathrm{Ru}(12)-\mathrm{Ru}(11)$ 94.17(4)

However, we believe that they exist in one form in solution as indicated by ${ }^{1} \mathrm{H}$ NMR studies. Unfortunately low-temperature ${ }^{1} \mathrm{H}$ NMR experiments could not reveal the signals due to the individual isomers at 220 K . The $\mathrm{NC}(\mathrm{O}) \mathrm{OMe}$ moiety in 2 can be regarded as a carbamate derivative which is essentially coplanar (maximum deviation $0.004 \AA$ in 2a and $0.0008 \AA$ in 2b). It is mutually perpendicular to the metal plane as is evident from the dihedral angle of 91.4° between the planes $\mathrm{N}(3)-\mathrm{C}(72)^{-}$ $\mathrm{O}(45)-\mathrm{O}(46)$ and $\mathrm{Ru}(9)-\mathrm{Ru}(10)-\mathrm{Ru}(11)-\mathrm{Ru}(12)$. Although the exact mechanism is not known, clusters $\mathbf{1}$ and $\mathbf{2}$ are products of a reaction involving the Ru-assisted cleavage of the bound methoxynitrido moiety. This moiety is implicated as a metal-surface-bound intermediate in a number of chemical processes such as nitrogen oxide reduction. ${ }^{6}$ Further work on the study of the intermediates which might be involved is underway.

Kong Research Grants Council and the University of Hong Kong. E. N.-M. H. acknowledges the receipt of a postgraduate studentship administered by the University of Hong Kong.

References

1 M. Pizzotti, S. Cenini, C. Crotti and F. Demartin, J. Organomet. Chem., 1989, 375, 123.
2 S.-H. Han, G. L. Geoffroy and A. L. Rheingold, Organometallics, 1986, 5, 2561; 1987, 6, 2380.
3 M. L. Blohm and W. L. Gladfelter, Organometallics, 1986, 5, 1049.

4 J.-S. Song, S.-H. Han, S. T. Hguyen, G. L. Geoffroy and A. L. Rheingold, Organometallics, 1990, 9, 2386.
5 K. K.-H. Lee and W. T. Wong, J. Chem. Soc., Dalton Trans., 1996, 1707; Inorg. Chem., 1996, 35, 5393.
6 W. L. Gladfelter, Adv. Organomet. Chem., 1985, 24, 41.

Acknowledgements

We gratefully acknowledge financial support from the Hong

[^0]: \dagger E-Mail: wtwong@hkucc.hku.hk
 \ddagger Spectroscopic data for the mixture of clusters 1 and 2. IR: $[v(\mathrm{CO}), n-$ hexane, $\left.\mathrm{cm}^{-1}\right] 2089 \mathrm{w}, 2059 \mathrm{vs}, 2049 \mathrm{~s}, 2037 \mathrm{vs}, 2026 \mathrm{~m}, 2008 \mathrm{~m}, 1987 \mathrm{~m}$, 1904w, 1856m; [v(NH), KBr disc, cm^{-1}] 3347w (Found: C, 30.0; H, 1.4; N, 1.7. Calc. for $\left.\mathrm{C}_{90} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{48} \mathrm{Ru}_{16}: \mathrm{C}, 30.23 ; \mathrm{H}, 1.52 ; \mathrm{N}, 1.57 \%\right)$. Cluster 1. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 6.79(\mathrm{~m}, 2 \mathrm{H}), 6.20(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 1 \mathrm{H}), 2.17(\mathrm{~s}$, $3 \mathrm{H})$ and $1.96\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{NH}}=49.3 \mathrm{~Hz}\right)$. FAB mass spectrum: $\mathrm{m} / \mathrm{z} 843$ (calc. 843), M^{+}. Cluster 2. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 6.79(\mathrm{~m}, 2 \mathrm{H}), 6.20(\mathrm{~m}$, $2 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H})$ and $2.17(\mathrm{~s}, 3 \mathrm{H})$. FAB mass spectrum: m/z 901 (calc. 901), M^{+}.

[^1]: § Crystal data for co-crystal of $[\mathbf{1} \cdot \mathbf{2}]_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{14}, \quad \mathrm{C}_{90} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{48} \mathrm{Ru}_{16}=$ $2\left(\mathrm{C}_{20} \mathrm{H}_{9} \mathrm{NO}_{11} \mathrm{Ru}_{4}\right) \cdot 2\left(\mathrm{C}_{22} \mathrm{H}_{11} \mathrm{NO}_{13} \mathrm{Ru}_{4}\right) \cdot \mathrm{C}_{6} \mathrm{H}_{14}, \quad M=3576.53$, triclinic, space group $P \overline{1}$ (no. 2), $a=17.763(1), b=18.481(1), c=19.185(1) \AA$, $\alpha=112.21(2), \quad \beta=100.68(2), \quad \gamma=92.53(2)^{\circ}, \quad U=5684(1) \AA^{3}, \quad Z=2$, $D_{\mathrm{c}}=2.089 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=3420$. Mo- $\mathrm{K} \alpha$ radiation, $T=298 \mathrm{~K}, \lambda=$ $0.71073 \AA, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=21.45 \mathrm{~cm}^{-1}$, yellow block $0.19 \times 0.28 \times 0.31$ $\mathrm{mm}, 19366$ unique data measured on a MAR research image-plate scanner, 11156 observed reflections $[I>3 \sigma(I)]$. An approximation of absorption by inter-image scaling was applied. $R=0.048$ and $R^{\prime}=0.065, w=\left[\sigma^{2}\left(F_{\mathrm{o}}\right)\right]^{-1}$. CCDC reference number 186/857.

